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From ballistic to Brownian motion through enhanced diffusion in vertex-splitting polygonal
and disk-dispersing Sinai billiards
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Boundary-collision orbit statistics in vertex-splitting rational polygonal and disk-scattering billiards is stud-
ied using deterministic and stochastic schemes. On increasing the number of vertices in pseudointegrable
polygons, the diffusion exponent, deduced from the mean-square orbit displacement, exhibits a crossover from
a ballistic to a superdiffusive regime, characteristic of chaotic Sinai billiards.
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INTRODUCTION of a billiard table(or a scattergrin integrable(or dispersing
systems. Regular polygonal billiards bounded by rational
Rational polygonal classical billiards are polygons whosepolygons ofm equal sides, hereaften-gons, are introduced
vertex angles are rational multiples af They are known by circumscribing below a circle of radiuB. Their area
[1-5] to be nonchaotic, with a null Lyapunov exponent andA,,= (mR2/2)sin 27/m and perimeteP ,,= 2mRsin 7/m pro-
Kolmogorov entropy. A delicate problem emerges when ravide the mean collision timer.,,= (7R/2)cosm/m. In the
tional polygons are employeld,7] to approximate chaotic “infinite-vertex” m-gon limit, i.e., in thex-gon, we naturally
billiards by circumscribing a boundary: what happens to thearrive at the circle-billiard (CB) with mean time 7.
regular motion in the polygon in the “infinite-vertex” limit? =«R/2, equal to 7., and the mean collision number
On one hand, the approximation associated with “quantizan;g(t) =n¢.(t). Similar findings were established for the-
tion” of motion can be realized to arbitrary precision; on the eragecoding length for the curved-by-circle-gon[see Eq.
other hand, theorrespondence principldoes not work for  (6) in Ref.[8]].
nonchaotic polygonal system8]. The problem is closely
related to a violation of the conditions of integrability in DETERMINISTIC APPROACH
polygons, in view of the splitting of orbits at the vertices
[2,8]. The vertex-splitting effects cause chaoticlike statistical I view of the fact that the billiard wall-collision angle,
changes in the associated quantum level Sp@ﬁ]rand even counted off the normal to the bOUndary, is preserved by elas-
exhibit positive Lyapunov exponents, if these are estimatedC reflections, the intrinsic and transient dynamics in inte-
with a finite precision{7]. In contrast, a recent study of al- grable billiards can be described2] by the so-called
gorithmic orbital complexity suggesi$] that the vertex- ¢-family orbit sets. In the particular case of regular motion in
angle effects are logarithmically short with time and polygo-mgons, whereyp is treated as a second constant of motion
nal billiards, even those considered with finite precision ard8], @ ¢-orbit set is given by a characteristic timg(¢) that
“mostly ordered”[8]. In this Rapid Communication we re- 0obeys[12,14 (7,(¢)).=7.m. Additionally, by using the
port on insights into the controversial issue of vertex-mean frequency equatigsee Eq(5) in Ref.[12]] we intro-
splitting effects in polygons obtained from the orbit-collision duce the random,, and the meam,, collision numbers:
statistics developed for integrable and chaotic billiards. ;
BILLIARD COLLISION STATISTICS M e:t) Tm(tg)’ (Ml @) Tem' @
The collision distribution functiorD(n,t) is introduced defined by reduced angles=[0,¢.,] in the uniformly oc-
with respect to the Liouville measure as a probability for acupied three-dimension&BD) phase spac€),, through the
given classical particléof unit mass and unit velocijyto  characteristic times
undergon random collisions in a time intervdl (see, e.g.,
Ref.[9]). It is characterized by the mean collision number ~ Tm(¢)= (7R/2¢p,) cos(/m)

cos '¢, odd m,m/2

= — I X
(D)= (Me= Jo nD(n.tdn= - @ SN ospemCos (g~ pem)  even mi2,

and the rms (root-mean-squaje deviation An(t)=((n ®
—ng)?)¥2. Equation(1) may also be treated as a statistical with ¢.,=7/2m and ¢.,= m/m, respectively, for thedd-
definition of the mean collision time, if t> 7. through the gonand theeven-gorcases. These observables are exempli-
observablen.(t). This is in agreement with studies of fied by the square billiard with 74(¢)=v2R(singe
scatter-collision[9,10] and wall-collision[11,12 statistics, +cos¢) * and by the CB witH12] 7x(¢) = 2R cose. Equa-
which deal with the billiard collision timg¢9,10,13,14 7.  tion (3) for m=4 is deduced from Eq2) through straight-
=A/P, given by the accessible ardaand the perimeteP ~ forward calculation of the number of collisions,(¢,t)

1063-651X/2001/6@)/0152014)/$20.00 65015201-1 ©2001 The American Physical Society



VALERY B. KOKSHENEV AND EDUARDO VICENTINI

D
15

¢15

Collision distribution, n

5

circle

15-gon

Reduced times t/t ]
¢15 |

" - 50

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 65 015201R)

posed estimation scheme for arbitramyusing the one-side-
equivalent mode]12]. Hence, the wall-collision distribution
that preserves),, space “volume” is
i i 21-1/2
sinen, n siNgem
Di?(n.t)= —— [1—(——) }

cmPcm

Nem @cm
for @cmCotecm=n/N¢m=<@cm/SiN@cm
5)

otherwiseD*9 =0, whereg,, is described in Eq(3). One
can verify that Eqs(5) and (4) for m=4 are numerically
equivalent. Additionally, the reduced rms deviatior 15|

\/(Pcm( @cmT COS@cmSIN@em)/2 sirt ecm—1
odd m,m/2

* — 100 ANem _

*
I * * _ 200 ]

\/QDcm( ¢cmtsin ‘Pcm)/zsm2 eecm—1
even m/2.

ncm

(6)

We see that the ordered motion driven by line segments of
0.5 . _1 1.5 2 the boundary in a finitemgon is characterized by,
Collision frequency, n/n_. ~Ang <t/ 7.. Qualitatively the same can be established
for the CB statistics given byn..Dr=m?/16v*(1
FIG. 1. Wall collision distributions against reduced collision —772/161/2)1/2 shown in Fig. 1 withv=n/n.g. The regular-
numbers inm-gonal billiards. Reduction is given by E@®) nem  motion predictions for the CB, triangle and square billiards
=1/7er. Points: numerical simulation data agisD15(n.t) for dif- 516 compared with simulation dafta6] in the insert of Fig.
ferent observation times=50, 100, and 20f;s. Lines: prediction 3 ' payiations from the deterministic motion are due to weak
for m=15 by Eq.(5) and that for the CB. Inset: numerical data for vertex-splitting effects well pronounced at low and high fre-
the triangle (n=3) and the squaren{=4) billiards compared with . S
Eq. (5), and that for the CB quencies. This is not the case whas 1. As seen from Eq.
o ' (6), Ang.=0 and, hencep{"®9(n,t)=8(n—n..), which
means that thex-gon dynamics is given solely by the
trappede.,= 0-set, by the way distinct from that in the CB.

sides in the 4-gon for a givep-orbit from the number of . "op o6 i Fig. 1 that both trapped sets substantially
intersections of ap-trajectoryin the correspondert.orentz . ; L9t :
contribute to the simulated motion in thlve-gon approxi-

gas (LG)] square lattice. Clearly this scheme disregards ) o -
vertex-splitting effects and, therefore, gives rise tegular- mated by the 15-gone. The vertex-singular effects, mani

(exp) ioti
motion part of the statistics introduced in E@l) by the 1‘1e5'5ted by Qogéer?&p Ct1.5 ' teﬁ%.tto dbl? Iatn ce (’;he fonf(;'iﬂng
distribution D§®9 = ¢ d¢4(n,t)/an|. The latter is found -gon an statistics exhibited by the=0-set and the

i i > , o~ ml2-set, respectively, below and above the mean fre-
;hrou.gh<p4f=(g)arcsn[(nrm/t(pw) —1]; given as the inverse  guency. Within this context the question arises as to whether
unction ofn,

the observed vertex-“ordered” effects are strong enough in
the «-gon to modify, say, the “sliding”¢ ~mu/2-set with
long-lived [Tgeg)(qo)>7'cm] orbits into the correspondent
“whispering gallery” ¢~/2 set of short-lived[ 7r(¢)

< 7¢,] Orbits, known in the CB, in order to match the distinct
high-frequency tail{see Fig. 1 and, thereby, to restore the
(4) correspondence principle that was claimed in R&f.

= gt(sing+cosg)r,’ with the two distinct orthogonal

16
DO t)= o sin ?

a nc4\/§

sin~

m 1 (4 n? .
4 i - '
for m/4<n/n.,<mv2/4, otherwise[15], D9 =0.

Note that the lower and the upper limiting collision frequen-
ciesv=n/n¢ are due to the singular orbits, respectively,
known “bouncing balls” (see, e.g., Ref{12]) given by ¢ The dispersingchaotic Sinai billiard [17] (SB) is a unit

~ /2,0 equivalent sets, and to the diagonal vertex-to-vertexell of the LG lattice model given by noninteracting particles
¢4 Set. Exact solutions similar to E¢) may be found also undergoing elastic collisions with scattering digk$ radius

for m=3,6 where the rotational symmetry of a polygon is R) periodically situated on a square lattig# sideL). Since
consistent with the translational symmetry of the correspondthe pioneering work§18,19 it has been recogniz@0,21]

ing 2D lattice. Meanwhile, in view of the existence of the that the low-density LG R<R,,R,=L/2) exhibits some
m-fold rotational axis of symmetry, all sides ofragon are features ofsuperdiffusive dynamicsThis was established
statistically equivalent, which allows one to extend the pro{20,21] from the mean-square-trajectory displacement

STOCHASTIC APPROACH
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(A?r),, through the late-time divergent diffusion “coeffi- Scatterer radius, R/L

cient.” Following up-to-date anomalous diffusion theories 0 0.25 0.5 0.75
[22] we represent this finding through the $ifusion dy- | ) '
namics exponentgzin explicit form (with expected X zg
<2), i.e., (A%r)cal 2x(t/7.R)??R, wherel g (=7cg) is the I

mean free path between two sequential scatterer collisions. ! o - ]
Treating the stochastic motion of particles in the LG within a | f 3 |
7
5

generalized random-walk scheme on the square lattice one
naturally arrives at E/A3), which provides the rms number

AﬁcR(t)‘x(tﬁcR)l/ZR (7

in the SB, and that

Afigm(t) emMA(t/7 ) Yom for ms>1 (8)

Dynamic exponent, z

to estimate vertex-splitting effects in time-gon. 8
Following to Bleher{20], anomalous diffusion in the SB 10°}
is due to the existence of the infinite corridors in the corre- r Zo2
spondent LG lattice, where the particle move boundlessly L ‘ Voo
long without disk scattering. We speculate that similar long- L L1 10°
lived trajectories exist in the phase spacensefons with a 0 9 12 15
large number of vertices. They originate from the aforesaid
regular-orbite~ 7/2 sets, called “sliding” orbits, with qua- Vertex number, P /L
sidivergent characteristic times{"®9~r_, cos'¢. More mom
precisely, in even-gons the relevant time emerging in(Bx. FIG. 2. Diffusion dynamics exponent against scattéstove
IS Fem= 79D (m/2) = 7..m/ 7 with the help of Eq(3). Inthe  and vertex(below characteristics in the Sinai and polygonal bil-
case of odd-gons “mesoscopic” analog of the sliding orbitsliards. Points: open circles—numerical data for the SBs of kide
may be introduced by th&,,=w(1/2—1/m) set through =1 for distinct dispersing disks of radiug; closed trianglegor
Tem= TgeG)(?Dm): TeM/ 7. With account of Eq.(8) these squares—the data for regular polygons of oddr even m equal
result in A%A ,m!~2?Zm_ Therefore, three possible sce- vertexes, sides of length, and perimetersy, (=mLy). Insets:
narios, caused by vertex-splitting effects, are expected in thg_cnr_lts, experimental data} for the_mean-square collision number de-
-gon and given byi) “vortex” disorderlike(if A%, =), viations on log-log coordinates; lines correspond to B3
(i) sliding orderlike (A%fi..=0), and (iii) mixed order-
disorder A%h,,,<x) dynamics. They are distinguishg22]
by (i) subdiffusive ¢..>2), (ii) superdiffusive ¢..<2), and We have discussed the interplay between the piece-line
(if) Brownian (z.=2) motion regimes. regular and vertex-angle singular boundary effects in rational
Results of our numerical study of the wall-collision sta- polygons, related by mathematicians to the problem of inte-
tistics in the dispersive Sinai and “almost integrable]  grability [1,2,8) and by physicists to the problem of causality
polygonal billiards based on, respectively, EG8.and (8),  and randomness. The proposed deterministic approach to the
are given in Fig. 2. The inset shows a typical temporal beintrinsic dynamics inm-gons reveals weak vertex-singular
havior of collision fluctuations imn—gons that exhibit devia- effects for the casesn= 3,4. With an increase in the number
tions from theballistic dynamical regimgz=1) associated of vertexes,irregularlike motion effects realized by sliding
with the ordered motion irtrue integrablebilliards. In the  orbits show(see Fig. 1 late-time vertex-memory effects that
SB one distinguishes three superdiffusive regimes with thgrevent the establishment of the expec{& dynamics-
dynamical exponentgg~1.5 for 0.08 <R<Rg with [20]  motion correspondence in thgeometrical corresponding
Rp=v2L/4 and 1.5<zz<2.0 for R;<R<R,, and normal system. More specifically, exploration of the correspondence
diffusion with zz=2 for the SB with finite horizon R principle borrowed in Ref[8] from quantum mechanics,
=R,,) or the diamond billiard9,10]. The observed Brown- where a “quantized” system within the quasiclassical ap-
ian regime, associated with “harcthaosin the SB is, addi-  proximation follows the same trajectories as its classical ana-
tionally, characterized by a pure Gaussian distribution forlog, has no justification for classical billiards approximated
scatterf9] and wall-collision statistics ensurd@3] by {(n by vertex-splitting polygons.
—ﬁcR)“)(l:’Z:\/?AzﬁcR. In curved-by-circle polygonal bil- We have discussed distinct motion regimes suggested by
liards (see the lower scale in Fig) the ballistic ¢,,=1) and the stochastic approach. The mixedler-disorderregime
the superdiffusive (¥z,<2) order-motionregimes are also emerges as chaos in the finite-horizon &Be Fig. 2 forzg
revealed. In thec-gon vertex-splitting effects are weak.(  =2). Thedisorderlikeregime, common to the chaotic SB, is
<2) but, presumably, present,(>1). unstable inm-gons ¢,,<2) and, thus, the “vortex”-like ex-

CONCLUSIONS
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citations, assumed by preservation of local angular momenta m=4

and ensured by therfold rotational symmetry, do not sur- A%n = E ((ANn)?)+ 22 (AnjAn;). (A1)
=1 i>]

vive. Conversely, therderlike dynamics, stabilized by the

underlying sliding orbits, exhibits pronounced deviations

(zn>1) from the ballistic-type order-motion regimes and of the random numbers, wheten;=n;—(n;).. Connection
simulates chaotic effects similar to those in the dispersingvith the (m=4) random square displacement?r = A?x
SB. In conclusion, we have demonstrated how the order-to+ A%y [given by A?x —sz(n —n*)2 in the x direction| is

chaos crossover in classical systems is driven through thgstablished through= ny+n, +n +ny . Heren,! (or n,)

controlled order-disorder-like dynamics regimes. accounts for intersections of a partlcle that moves in a posi-
tive (or negative direction of the axis (or y). Correspond-
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(fwo consequent particle-wall collisiong, +12,, is related to

whereg;; is the Kronecker symbol. In the stochastic approxi-
mation we ignore correlations between reflections from dif-
We deal with the LG model related to the chaotic SB andferent walls, thus, (AnjAnj)c=(An)Z=0 and (nn;)
also associated with the “chaotic” one-equivalent-side={n;); in the last terms in EqgA1) and(AZ) respectlvely
model of mgon with ms>1. Assuming that the vertex- Also, Eq. (A1) is reduced taA2n.,=m({n?).—(n;)) that
disorder effects predominate we adopt within gtechastic  results in, with help of Eq(A2), the desirable estimates for
approximationthat a given particle intersects the periodic wall-collision rms fluctuation
lattice cells(billiard boundariep after every collision with a

APPENDIX

scatterer or a vertex. The random number of collisions (A2 >1/2 m (A2 >1/2

=23n; is given through counting the number of intersections An () =v2——— \[ (A3)

n; with ani boundary (=1,2,...m) any of m statistically Ter 2 Tem

equivalent sides. Thus, we obtain for the meap,,

=m(n;). and the fluctuation in SBs or inm-gons, respectively.
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