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From ballistic to Brownian motion through enhanced diffusion in vertex-splitting polygonal
and disk-dispersing Sinai billiards
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Boundary-collision orbit statistics in vertex-splitting rational polygonal and disk-scattering billiards is stud-
ied using deterministic and stochastic schemes. On increasing the number of vertices in pseudointegrable
polygons, the diffusion exponent, deduced from the mean-square orbit displacement, exhibits a crossover from
a ballistic to a superdiffusive regime, characteristic of chaotic Sinai billiards.
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INTRODUCTION

Rational polygonal classical billiards are polygons who
vertex angles are rational multiples ofp. They are known
@1–5# to be nonchaotic, with a null Lyapunov exponent a
Kolmogorov entropy. A delicate problem emerges when
tional polygons are employed@6,7# to approximate chaotic
billiards by circumscribing a boundary: what happens to
regular motion in the polygon in the ‘‘infinite-vertex’’ limit?
On one hand, the approximation associated with ‘‘quanti
tion’’ of motion can be realized to arbitrary precision; on t
other hand, thecorrespondence principledoes not work for
nonchaotic polygonal systems@8#. The problem is closely
related to a violation of the conditions of integrability
polygons, in view of the splitting of orbits at the vertice
@2,8#. The vertex-splitting effects cause chaoticlike statisti
changes in the associated quantum level spectra@6# and even
exhibit positive Lyapunov exponents, if these are estima
with a finite precision@7#. In contrast, a recent study of a
gorithmic orbital complexity suggests@8# that the vertex-
angle effects are logarithmically short with time and polyg
nal billiards, even those considered with finite precision
‘‘mostly ordered’’ @8#. In this Rapid Communication we re
port on insights into the controversial issue of verte
splitting effects in polygons obtained from the orbit-collisio
statistics developed for integrable and chaotic billiards.

BILLIARD COLLISION STATISTICS

The collision distribution functionD(n,t) is introduced
with respect to the Liouville measure as a probability fo
given classical particle~of unit mass and unit velocity! to
undergon random collisions in a time intervalt ~see, e.g.,
Ref. @9#!. It is characterized by the mean collision numbe

nc~ t ![^n&c5E
0

`

nD~n,t !dn5
t

tc
~1!

and the rms ~root-mean-square! deviation Dnc(t)5^(n
2nc)

2&c
1/2. Equation~1! may also be treated as a statistic

definition of the mean collision timetc , if t@tc through the
observablenc(t). This is in agreement with studies o
scatter-collision@9,10# and wall-collision @11,12# statistics,
which deal with the billiard collision time@9,10,13,14# tc
5pA/P, given by the accessible areaA and the perimeterP
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of a billiard table~or a scatterer! in integrable~or dispersing!
systems. Regular polygonal billiards bounded by ratio
polygons ofm equal sides, hereafterm-gons, are introduced
by circumscribing below a circle of radiusR. Their area
Am5(mR2/2)sin 2p/m and perimeterPm52mRsinp/m pro-
vide the mean collision timetcm5(pR/2)cosp/m. In the
‘‘infinite-vertex’’ m-gon limit, i.e., in thè -gon, we naturally
arrive at the circle-billiard ~CB! with mean time tcR
5pR/2, equal to tc` , and the mean collision numbe
ncR(t)5nc`(t). Similar findings were established for theav-
eragecoding length for the curved-by-circlè-gon @see Eq.
~6! in Ref. @8##.

DETERMINISTIC APPROACH

In view of the fact that the billiard wall-collision anglew,
counted off the normal to the boundary, is preserved by e
tic reflections, the intrinsic and transient dynamics in in
grable billiards can be described@12# by the so-called
w-family orbit sets. In the particular case of regular motion
m-gons, wherew is treated as a second constant of moti
@8#, a w-orbit set is given by a characteristic timetm(w) that
obeys @12,14# ^tm(w)&c5tcm . Additionally, by using the
mean frequency equation@see Eq.~5! in Ref. @12## we intro-
duce the randomnm and the meanncm collision numbers:

nm~w,t !5
t

tm~ tw!
, ncm5^nm~w,t !&c5

t

tcm
, ~2!

defined by reduced anglesw5@0,wcm# in the uniformly oc-
cupied three-dimensional~3D! phase spaceVm through the
characteristic times

tm~w!5 ~pR/2wcm! cos~p/m!

3sinwcmH cos21w, odd m,m/2

coswcm cos21~w2wcm! even m/2,

~3!

with wcm5p/2m andwcm5p/m, respectively, for theodd-
gon and theeven-goncases. These observables are exem
fied by the square billiard with t4(w)5&R(sinw
1cosw)21 and by the CB with@12# tR(w)52R cosw. Equa-
tion ~3! for m54 is deduced from Eq.~2! through straight-
forward calculation of the number of collisionsn4(w,t)
©2001 The American Physical Society01-1
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5wc4t(sinw1cosw)tc4
21 with the two distinct orthogona

sides in the 4-gon for a givenw-orbit from the number of
intersections of aw-trajectory in the correspondent@Lorentz
gas ~LG!# square lattice. Clearly this scheme disrega
vertex-splitting effects and, therefore, gives rise to aregular-
motion part of the statistics introduced in Eq.~1! by the
distribution D4

(reg)5wc4
21u]w4(n,t)/]nu. The latter is found

throughw45( 1
2 )arcsin@(ntc4 /twc4)

221#; given as the inverse
function of n4 ,

D4
~reg!~n,t !5

16

p2nc4&
sin21Fp42

1

2
arcsinS 4

p

n

nc4

2D21G ,
for p/4,n/nc4,p&/4, otherwise @15#, D4

~reg!50.
~4!

Note that the lower and the upper limiting collision freque
cies v5n/nc4 are due to the singular orbits, respective
known ‘‘bouncing balls’’ ~see, e.g., Ref.@12#! given by w
'p/2,0 equivalent sets, and to the diagonal vertex-to-ve
wc4 set. Exact solutions similar to Eq.~4! may be found also
for m53,6 where the rotational symmetry of a polygon
consistent with the translational symmetry of the correspo
ing 2D lattice. Meanwhile, in view of the existence of th
m-fold rotational axis of symmetry, all sides of am-gon are
statistically equivalent, which allows one to extend the p

FIG. 1. Wall collision distributions against reduced collisio
numbers inm-gonal billiards. Reduction is given by Eq.~2! ncm

5t/tcm . Points: numerical simulation data onnc15D15(n,t) for dif-
ferent observation times,t550, 100, and 200tc15. Lines: prediction
for m515 by Eq.~5! and that for the CB. Inset: numerical data f
the triangle (m53) and the square (m54) billiards compared with
Eq. ~5!, and that for the CB.
01520
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posed estimation scheme for arbitrarym using the one-side-
equivalent model@12#. Hence, the wall-collision distribution
that preservesVm space ‘‘volume’’ is

Dm
~reg!~n,t !5

sinwm

ncmwcm
2 F12S n

ncm

sinwcm

wcm
D 2G21/2

for wcm cotwcm<n/ncm<wcm /sinwcm

~5!

otherwiseDm
(reg)50, wherewcm is described in Eq.~3!. One

can verify that Eqs.~5! and ~4! for m54 are numerically
equivalent. Additionally, the reduced rms deviation is@15#

Dncm

ncm
55

Awcm~wcm1coswcm sinwcm!/2 sin2 wcm21

odd m,m/2

Awcm~wcm1sinwcm!/2sin2 wcm21

even m/2.
~6!

We see that the ordered motion driven by line segments
the boundary in a finitem-gon is characterized byncm
;Dncm}t/tcm . Qualitatively the same can be establish
for the CB statistics given by nc`DR5p2/16n4(1
2p2/16n2)1/2 shown in Fig. 1 withn5n/ncR . The regular-
motion predictions for the CB, triangle and square billiar
are compared with simulation data@16# in the insert of Fig.
1. Deviations from the deterministic motion are due to we
vertex-splitting effects well pronounced at low and high fr
quencies. This is not the case whenm@1. As seen from Eq.
~6!, Dnc`50 and, hence,D`

(reg)(n,t)5d(n2nc`), which
means that thè -gon dynamics is given solely by th
trappedw`50-set, by the way distinct from that in the CB
We observe in Fig. 1 that both trapped sets substanti
contribute to the simulated motion in thè-gon approxi-
mated by the 15-gone. The vertex-singular effects, ma
fested by nonzeroDnc15

(exp) , tend to balance the conflicting
15-gon and CB statistics exhibited by thew'0-set and the
w'p/2-set, respectively, below and above the mean
quency. Within this context the question arises as to whe
the observed vertex-‘‘ordered’’ effects are strong enough
the `-gon to modify, say, the ‘‘sliding’’w 'p/2-set with
long-lived @t`

(reg)(w)@tc`# orbits into the corresponden
‘‘whispering gallery’’ w'p/2 set of short-lived@tR(w)
!tc`# orbits, known in the CB, in order to match the distin
high-frequency tails~see Fig. 1! and, thereby, to restore th
correspondence principle that was claimed in Ref.@8#.

STOCHASTIC APPROACH

The dispersingchaotic Sinai billiard @17# ~SB! is a unit
cell of the LG lattice model given by noninteracting particl
undergoing elastic collisions with scattering disks~of radius
R! periodically situated on a square lattice~of sideL!. Since
the pioneering works@18,19# it has been recognized@20,21#
that the low-density LG (R,Ra ,Ra5L/2) exhibits some
features ofsuperdiffusive dynamics. This was established
@20,21# from the mean-square-trajectory displaceme
1-2
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^D2r &c , through the late-time divergent diffusion ‘‘coeffi
cient.’’ Following up-to-date anomalous diffusion theori
@22# we represent this finding through the SBdiffusion dy-
namics exponent zR in explicit form ~with expected 1,zR

,2!, i.e., ^D2r &ca l cR
2 (t/ t̃cR)2/zR, where l cR (5 t̃cR) is the

mean free path between two sequential scatterer collisi
Treating the stochastic motion of particles in the LG within
generalized random-walk scheme on the square lattice
naturally arrives at Eq.~A3!, which provides the rms numbe

DñcR~ t !}~ t/ t̃cR!1/zR ~7!

in the SB, and that

Dñcm~ t !}m1/2~ t/ t̃cm!1/zm for m@1 ~8!

to estimate vertex-splitting effects in them-gon.
Following to Bleher@20#, anomalous diffusion in the SB

is due to the existence of the infinite corridors in the cor
spondent LG lattice, where the particle move boundles
long without disk scattering. We speculate that similar lon
lived trajectories exist in the phase space ofm-gons with a
large number of vertices. They originate from the afores
regular-orbitw'p/2 sets, called ‘‘sliding’’ orbits, with qua-
sidivergent characteristic timestm

(reg)'tc` cos21 w. More
precisely, in even-gons the relevant time emerging in Eq.~8!,
is t̃cm5tm

(reg)(p/2)5tc`m/p with the help of Eq.~3!. In the
case of odd-gons ‘‘mesoscopic’’ analog of the sliding orb
may be introduced by thew̃m5p(1/221/m) set through
t̃cm5tm

(reg)(w̃m)5tc`m/p. With account of Eq.~8! these
result in D2ñcm}m122/zm. Therefore, three possible sc
narios, caused by vertex-splitting effects, are expected in
`-gon and given by~i! ‘‘vortex’’ disorderlike~if D2ñc`5`!,
~ii ! sliding orderlike (D2ñc`50), and ~iii ! mixed order-
disorder (D2ñc`,`) dynamics. They are distinguished@22#
by ~i! subdiffusive (z`.2), ~ii ! superdiffusive (z`,2), and
~ii ! Brownian (z`52) motion regimes.

Results of our numerical study of the wall-collision st
tistics in the dispersive Sinai and ‘‘almost integrable’’@1#
polygonal billiards based on, respectively, Eqs.~7! and ~8!,
are given in Fig. 2. The inset shows a typical temporal
havior of collision fluctuations inm-gons that exhibit devia-
tions from theballistic dynamical regime(z51) associated
with the ordered motion intrue integrablebilliards. In the
SB one distinguishes three superdiffusive regimes with
dynamical exponentszR'1.5 for 0.05L<R<Rb with @20#
Rb5&L/4 and 1.5,zR,2.0 for Rb,R,Ra , and normal
diffusion with zR52 for the SB with finite horizon (R
>Ra) or the diamond billiard@9,10#. The observed Brown-
ian regime, associated with ‘‘hard’’chaosin the SB is, addi-
tionally, characterized by a pure Gaussian distribution
scatter-@9# and wall-collision statistics ensured@23# by ^(n
2ñcR)4&c

1/25)D2ñcR . In curved-by-circle polygonal bil-
liards~see the lower scale in Fig. 2! the ballistic (zm51) and
the superdiffusive (1,zm,2) order-motionregimes are also
revealed. In thè -gon vertex-splitting effects are weak (z`

,2) but, presumably, present (z`.1).
01520
s.

ne

-
ly
-

d

e

-

e

r

CONCLUSIONS

We have discussed the interplay between the piece-
regular and vertex-angle singular boundary effects in ratio
polygons, related by mathematicians to the problem of in
grability @1,2,8# and by physicists to the problem of causali
and randomness. The proposed deterministic approach to
intrinsic dynamics inm-gons reveals weak vertex-singula
effects for the casesm53,4. With an increase in the numbe
of vertexes,irregularlike motion effects realized by sliding
orbits show~see Fig. 1! late-time vertex-memory effects tha
prevent the establishment of the expected@8# dynamics-
motion correspondence in thegeometrical corresponding
system. More specifically, exploration of the corresponde
principle borrowed in Ref.@8# from quantum mechanics
where a ‘‘quantized’’ system within the quasiclassical a
proximation follows the same trajectories as its classical a
log, has no justification for classical billiards approximat
by vertex-splitting polygons.

We have discussed distinct motion regimes suggested
the stochastic approach. The mixedorder-disorder regime
emerges as chaos in the finite-horizon SB~see Fig. 2 forzR
52!. Thedisorderlikeregime, common to the chaotic SB,
unstable inm-gons (zm,2) and, thus, the ‘‘vortex’’-like ex-

FIG. 2. Diffusion dynamics exponent against scatterer~above!
and vertex~below! characteristics in the Sinai and polygonal b
liards. Points: open circles—numerical data for the SBs of sidL
51 for distinct dispersing disks of radiusR; closed triangles~or
squares!—the data for regular polygons of odd~or even! m equal
vertexes, sides of lengthLm and perimetersPm (5mLm). Insets:
points, experimental data for the mean-square collision number
viations on log-log coordinates; lines correspond to Eq.~8!.
1-3
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citations, assumed by preservation of local angular mome
and ensured by them-fold rotational symmetry, do not sur
vive. Conversely, theorderlike dynamics, stabilized by the
underlying sliding orbits, exhibits pronounced deviatio
(zm.1) from the ballistic-type order-motion regimes an
simulates chaotic effects similar to those in the dispers
SB. In conclusion, we have demonstrated how the order
chaos crossover in classical systems is driven through
controlled order-disorder-like dynamics regimes.

ACKNOWLEDGMENTS

The authors are grateful to Maria Carolina Nemes a
Marcos A. M. de Aguiar for numerous illuminative discu
sions. Thanks are also due to Mario J. D. Carneiro, Mar
G. E. da Luz, and Alejandro M. F. Rivas for helpful debat
and to Ronald Dickman for a critical reading of the man
script. Financial support of the Brazilian agency CNPq
also acknowledged.

APPENDIX

We deal with the LG model related to the chaotic SB a
also associated with the ‘‘chaotic’’ one-equivalent-si
model of m-gon with m@1. Assuming that the vertex
disorder effects predominate we adopt within thestochastic
approximationthat a given particle intersects the period
lattice cells~billiard boundaries! after every collision with a
scatterer or a vertex. The random number of collisionsn
5Sni is given through counting the number of intersectio
ni with an i boundary (i 51,2,...,m) any of m statistically
equivalent sides. Thus, we obtain for the meanncm
5m^ni&c and the fluctuation
01520
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D2ncm5 (
i 51

m54

^~Dni !
2&c12(

i . j
^DniDnj&c ~A1!

of the random numbers, whereDni5ni2^ni&c . Connection
with the (m54) random square displacementD2r 5D2x
1D2y @given by D2x5 l cx

2 (nx
12nx

2)2 in the x direction# is
established throughn5nx

11nx
21ny

11ny
2 . Herenx

1 ~or ny
2!

accounts for intersections of a particle that moves in a p
tive ~or negative! direction of the axisx ~or y!. Correspond-
ingly, the random square length of a free motion between
two consequent particle-wall collisions,l cx

2 1 l cy
2 , is related to

l cR (5 t̃cR) in the SB, established byl cR
2 5^ l cx

2 &c1^ l cy
2 &c

52^ l cx
2 &c and estimated in the isotropic approximatio

These provide

^D2r &c52t̃cR
2 @^ni

2&c2^ninj&c~12d i j !#, ~A2!

whered i j is the Kronecker symbol. In the stochastic appro
mation we ignore correlations between reflections from d
ferent walls, thus, ^DniDnj&c5^Dni&c

250 and ^ninj&c

5^ni&c
2 in the last terms in Eqs.~A1! and~A2!, respectively.

Also, Eq. ~A1! is reduced toD2ncm5m(^ni
2&c2^ni&c

2) that
results in, with help of Eq.~A2!, the desirable estimates fo
wall-collision rms fluctuation

Dnc~ t !5&
^D2r &c

1/2

t̃cR
or Am

2

^D2r &c
1/2

t̃cm
~A3!

in SBs or inm-gons, respectively.
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